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1 Fooling Low-Degree Polynomials, Restriction-Based PRGs,
and Fractional PRGs

1.1 Fooling polynomial functions over F, with small-biased distributions

Last time, we discussed pseudorandomness for small-biased distributions. One way to
think of small-biased distributions is that they fool linear functions over Fy. You might
ask if they fool quadratic functions, as well. This would be the case if L;(f) is small for
quadratic functions, but this is not always the case.

Example 1.1. Let
IPy = xyx9 + 2324 + - + X127, (mod 2).

Then for all § C [n], [IP(S)] = 272, so Ly(IP) = 2n2-"/2 = on/2,
Now let D be the uniform distribution on {z : IP3(z) = 0 (mod 2)}. You can show
that D is 27/ 2-biased. However, D cannot fool the inner product function IP.

It turns out that if you take two independent samples from a small-biased distribution
and XOR them, you get a distribution which fools quadratic functions.

Theorem 1.1 (Viola). The sum of any independent d copies of an e-biased distribution

fools degree d polynomials over Fo with error 9g1/247"

If we let £ = (6/9)2"", where § = 922" then our seed length is O(dlog(n/e)) =
O(dlogn + d2%1og(1/8)). For fixed d, this is great, but this stops being great if you take
d > logn. The proof uses the discrete derivative.

Definition 1.1. If f € Fo[zy,...,2,] with deg f = d, the discrete derivative with
respect to direction y € I} is

(Ayf)(x) = flz+y) — f(o).



Proposition 1.1. Ifdeg f =d,
deg(Ayf) <d—1.
Example 1.2. For f(z) = zyx2,
Ayf(@) = (z1+y1)(z2 + y2) — 2122

The proof of Viola’s theorem proceeds by case analysis, looking at whether f is biased
or unbiased. If bias f > ¢, then for all x,

f@) = f(z) + f(@+y) = Ay f(2).
for a random y. If bias f < §, then
bias f = | Ey~u,[(~=1))].
Then you need to argue that

iS Sma“.

1.2 Restriction-based pseudorandom generation

Here is a thought experiment due to Ajtai and Wigderson. If we use a random restriction,
we may get a simplified function which we can more easily fool. If we can fool a randomly
restricted function, then the uniformly random and the partially uniformly random inputs
should be indistinguishable to f:
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Now we recursively replace the actually random bits (gold coins) with pseudorandom bits
(silver coins). Then the pseudorandom bits should be indistinguishable from the actually



random bits.
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To fool f € C, it sufficies to fool f under (pseudo)-random restrictions:
e Select J C [n] pseudo-randomly, with |J| =~ pn.
e Select x ~ D, a pseudorandom distribution on {+1}".
e Select z ~ Uz, the uniform distribution on J, so that
Ey~v,[f(Y)] = Ej[Ex~p,z~v5[f1,2(X)]

To get a pseudorandom generator, apply recursion %logn times.

Theorem 1.2 (Ajtai-Wigderson '85). It is enough for D to fool f;.(x) for mosy choices
of J, z.

Theorem 1.3 (GMRTYV ’12). It is enough for D to fool their average
Bias f(z) = Ej z~v[f1,2(2)].
Here is the Fourier analytical approach: The Fourier expansion of f : {£1}" — {£1}

f@) =Y F) [z
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is

where

F(S) = Exeqsnyn [f(X)HXi] S AGOEDIRIC
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In 2013, Reingold, Steinke, and Vadhan considered Ly x(f) := > g, 5=k |/ (S)]-
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Proposition 1.2. Under p-random restrictions, Fourier coefficients of sets of size k shrink
by a p* factor.

E[L, x(Bias f)] Zp Liy(f

If there exists at such that for all k, Ly j,(f) < tk, then picking p = % gives E[L, (Bias f)] =
0(1).

This tells us that under p-random restrictions, small-biased distributions fool the re-
stricted function. So if this holds for pseudorandom J as well, this gives a PRG with
O(t - log? n) random bits.

1.3 Fractional pseudorandom generators

Assume that there exists a parameter t such that for any f € C and for any k,

Lyk(f Z F(S) <t
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and that C is closed under restriction. Then the following approach will give a pseudoran-
dom generator with seed-length O(t?log(n/e)).
The idea of CHHL is to “think inside the box.” If f : {£1}"™ — {£1} has Fourier

expansion
= > FS) [
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then we can view this as an extension of the function to f : R" — R.

Proposition 1.3. If we restrict the domain of f to [—1,1]", then the range is contained
n[—1,1].
Example 1.3. Let f(:(}l,.%'Q) = % — %.Tl + %.%2 — %1‘11‘2.

[insert picture 3]

Proof. If € [—1,1]", then we claim that
f() =Exy,..x, [f(X)],

where the X; are independent with distribution

P(X; =1) = +“Z, P(X; = —1) =1
2 2
This follows from the linearity of expectation:
Ex,..x.[f(X)]=E (S) ] X
SCln] i€S



= f(p)- O

Definition 1.2. An e-fractional pseudorandom generator is a distribution D over
[—1,1]™ (sampleable with s random bits) such that for all f € C

|Ex~plf(X)] = Ey~v,[f(Y)]| <e.

Here we are comparing points inside the box with points on the corners.

Remark 1.1. Using the proof of the previous lemma,

Ey~u,[f(Y)] = £(0).

So we can rewrite this condition as

| Ex~pl[f(X)] = F(0)] <e.

The issue is that we can always just sample from 0 to get a fractional pseudorandom
generator. But we really want to sample from the corners, so CHHL came up with the
following condition.

Definition 1.3. An e-fractional pseudorandom generator D is p?>-noticable if for all i
Ex~p[X}] > p°.

We will treat the case where X is drawn from a fractional pseudorandom generator
over [—p,p]".
Proposition 1.4. If we take %D, we get a fractional PRG that fools f with error O(g).

Proof.

Exn |1 (5%)| - 10| = [Exn | S 7T (5) X@'] - i)
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What CHHL showed is that if C is closed under restriction, then we can use random
restrictions to get a PRG from a fractional PRG. It is conjectured that low-degree polyno-
mials over Fy have these desired properties.
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