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1 Fooling Low-Degree Polynomials, Restriction-Based PRGs,
and Fractional PRGs

1.1 Fooling polynomial functions over F2 with small-biased distributions

Last time, we discussed pseudorandomness for small-biased distributions. One way to
think of small-biased distributions is that they fool linear functions over F2. You might
ask if they fool quadratic functions, as well. This would be the case if L1(f) is small for
quadratic functions, but this is not always the case.

Example 1.1. Let

IP2 = x1x2 + x3x4 + · · ·+ xn−1xn (mod 2).

Then for all S ⊆ [n], |ÎP(S)| = 2−n/2, so L1(IP) = 2n2−n/2 = 2n/2.
Now let D be the uniform distribution on {x : IP2(x) = 0 (mod 2)}. You can show

that D is 2−n/2-biased. However, D cannot fool the inner product function IP2.

It turns out that if you take two independent samples from a small-biased distribution
and XOR them, you get a distribution which fools quadratic functions.

Theorem 1.1 (Viola). The sum of any independent d copies of an ε-biased distribution

fools degree d polynomials over F2 with error 9ε1/2
d−1

.

If we let ε = (δ/9)2
d−1

, where δ = 9ε1/2
d−1

, then our seed length is O(d log(n/ε)) =
O(d log n + d2d log(1/δ)). For fixed d, this is great, but this stops being great if you take
d ≥ log n. The proof uses the discrete derivative.

Definition 1.1. If f ∈ F2[x1, . . . , xn] with deg f = d, the discrete derivative with
respect to direction y ∈ Fn

2 is

(∆yf)(x) = f(x+ y)− f(x).
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Proposition 1.1. If deg f = d,

deg(∆yf) ≤ d− 1.

Example 1.2. For f(x) = x1x2,

∆yf(x) = (x1 + y1)(x2 + y2)− x1x2

The proof of Viola’s theorem proceeds by case analysis, looking at whether f is biased
or unbiased. If bias f ≥ δ, then for all x,

f(x) ≈ f(x) + f(x+ y) = ∆yf(x).

for a random y. If bias f ≤ δ, then

bias f = |EY∼Un [(−1)f(y)]|.

Then you need to argue that

EX(1),...,X(d) [(−1)f(X
(1)+X(2)+···+X(d))]

is small.

1.2 Restriction-based pseudorandom generation

Here is a thought experiment due to Ajtai and Wigderson. If we use a random restriction,
we may get a simplified function which we can more easily fool. If we can fool a randomly
restricted function, then the uniformly random and the partially uniformly random inputs
should be indistinguishable to f :

Now we recursively replace the actually random bits (gold coins) with pseudorandom bits
(silver coins). Then the pseudorandom bits should be indistinguishable from the actually
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random bits.

To fool f ∈ C, it sufficies to fool f under (pseudo)-random restrictions:

• Select J ⊆ [n] pseudo-randomly, with |J | ≈ pn.

• Select x ∼ D, a pseudorandom distribution on {±1}n.

• Select z ∼ UJ , the uniform distribution on J , so that

EY∼Un [f(Y )] ≈ EJ [EX∼D,Z∼UJ
[fJ,Z(X)]

To get a pseudorandom generator, apply recursion 1
p log n times.

Theorem 1.2 (Ajtai-Wigderson ’85). It is enough for D to fool fJ,z(x) for mosy choices
of J, z.

Theorem 1.3 (GMRTV ’12). It is enough for D to fool their average

Bias f(x) = EJ,Z∼UJ
[fJ,Z(x)].

Here is the Fourier analytical approach: The Fourier expansion of f : {±1}n → {±1}
is

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xI ,

where

f̂(S) = EX∼{±1}n

[
f(X)

∏
i∈S

Xi

]
, L1(f) =

∑
S⊆[n]

|f̂(S)|.

In 2013, Reingold, Steinke, and Vadhan considered L1.k(f) :=
∑

S:|S|=k |f̂(S)|.
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Proposition 1.2. Under p-random restrictions, Fourier coefficients of sets of size k shrink
by a pk factor.

E[L1,k(Bias f)] =
n∑

k=0

pkL1,k(f).

If there exists a t such that for all k, L1,k(f) ≤ tk, then picking p = 1
2t gives E[L1(Bias f)] =

O(1).

This tells us that under p-random restrictions, small-biased distributions fool the re-
stricted function. So if this holds for pseudorandom J as well, this gives a PRG with
O(t · log2 n) random bits.

1.3 Fractional pseudorandom generators

Assume that there exists a parameter t such that for any f ∈ C and for any k,

L1,k(f) =
∑

S⊆[n],
|S|=k

|f̂(S)| ≤ tk

and that C is closed under restriction. Then the following approach will give a pseudoran-
dom generator with seed-length O(t2 log(n/ε)).

The idea of CHHL is to “think inside the box.” If f : {±1}n → {±1} has Fourier
expansion

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi,

then we can view this as an extension of the function to f : Rn → R.

Proposition 1.3. If we restrict the domain of f to [−1, 1]n, then the range is contained
in [−1, 1].

Example 1.3. Let f(x1, x2) = 1
2 −

1
2x1 + 1

2x2 −
1
2x1x2.

[insert picture 3]

Proof. If µ ∈ [−1, 1]n, then we claim that

f(µ) = EX1,...,Xn [f(X)],

where the Xi are independent with distribution

P(Xi = 1) =
1 + µi

2
, P(Xi = −1) =

1− µi
2

.

This follows from the linearity of expectation:

EX1,...,Xn [f(X)] = E

∑
S⊆[n]

f̂(S)
∏
i∈S

Xi


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=
∑
S

f̂(S)E

[∏
i∈S

Xi

]
=
∑
S

f̂(S)
∏
i∈S

E[Xi]

=
∑
S

f̂(S)
∏
i∈S

µi

= f(µ).

Definition 1.2. An ε-fractional pseudorandom generator is a distribution D over
[−1, 1]n (sampleable with s random bits) such that for all f ∈ C

|EX∼D[f(X)]− EY∼Un [f(Y )]| ≤ ε.

Here we are comparing points inside the box with points on the corners.

Remark 1.1. Using the proof of the previous lemma,

EY∼Un [f(Y )] = f(0).

So we can rewrite this condition as

|EX∼D[f(X)]− f(0)| ≤ ε.

The issue is that we can always just sample from 0 to get a fractional pseudorandom
generator. But we really want to sample from the corners, so CHHL came up with the
following condition.

Definition 1.3. An ε-fractional pseudorandom generator D is p2-noticable if for all i

EX∼D[X2
i ] ≥ p2.

We will treat the case where X is drawn from a fractional pseudorandom generator
over [−p, p]n.

Proposition 1.4. If we take 1
2tD, we get a fractional PRG that fools f with error O(ε).

Proof. ∣∣∣∣EX∼D

[
f

(
1

2t
X

)]
− f(0)

∣∣∣∣ =

∣∣∣∣∣EX∼D

[∑
S

f̂(S)
∏
i∈S

(
1

2t

)
Xi

]
− f̂(∅)

∣∣∣∣∣
=

∣∣∣∣∣∣EX∼D

∑
S 6=∅

f̂(S)
∏
i∈S

(
1

2t

)
Xi

∣∣∣∣∣∣
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≤
∑
S 6=∅

|f̂(S)|
(

1

2t

)|S| ∣∣∣∣∣EX∼D

[∏
i∈S

Xi

]∣∣∣∣∣
≤ ε

∑
∅6=S⊆[n]

|f̂(S)|
(

1

2t

)|S|

≤ ε
n∑

k=1

L1,k(f)

(
1

2t

)k

= ε
n∑

k=1

tk

(2t)k

≤ ε.

What CHHL showed is that if C is closed under restriction, then we can use random
restrictions to get a PRG from a fractional PRG. It is conjectured that low-degree polyno-
mials over F2 have these desired properties.
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