Computer Science 294 Lecture 14 Notes

Daniel Raban
March 2, 2023

1 Fooling Low-Degree Polynomials, Restriction-Based PRGs, and Fractional PRGs

1.1 Fooling polynomial functions over \mathbb{F}_{2} with small-biased distributions

Last time, we discussed pseudorandomness for small-biased distributions. One way to think of small-biased distributions is that they fool linear functions over \mathbb{F}_{2}. You might ask if they fool quadratic functions, as well. This would be the case if $L_{1}(f)$ is small for quadratic functions, but this is not always the case.

Example 1.1. Let

$$
\mathrm{IP}_{2}=x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{n-1} x_{n} \quad(\bmod 2) .
$$

Then for all $S \subseteq[n],|\widehat{\operatorname{IP}}(S)|=2^{-n / 2}$, so $L_{1}(\mathrm{IP})=2^{n} 2^{-n / 2}=2^{n / 2}$.
Now let \mathcal{D} be the uniform distribution on $\left\{x: \mathrm{IP}_{2}(x)=0(\bmod 2)\right\}$. You can show that \mathcal{D} is $2^{-n / 2}$-biased. However, \mathcal{D} cannot fool the inner product function IP_{2}.

It turns out that if you take two independent samples from a small-biased distribution and XOR them, you get a distribution which fools quadratic functions.

Theorem 1.1 (Viola). The sum of any independent d copies of an ε-biased distribution fools degree d polynomials over \mathbb{F}_{2} with error $9 \varepsilon^{1 / 2^{d-1}}$.

If we let $\varepsilon=(\delta / 9)^{2^{d-1}}$, where $\delta=9 \varepsilon^{1 / 2^{d-1}}$, then our seed length is $O(d \log (n / \varepsilon))=$ $O\left(d \log n+d 2^{d} \log (1 / \delta)\right)$. For fixed d, this is great, but this stops being great if you take $d \geq \log n$. The proof uses the discrete derivative.

Definition 1.1. If $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg} f=d$, the discrete derivative with respect to direction $y \in \mathbb{F}_{2}^{n}$ is

$$
\left(\Delta_{y} f\right)(x)=f(x+y)-f(x) .
$$

Proposition 1.1. If $\operatorname{deg} f=d$,

$$
\operatorname{deg}\left(\Delta_{y} f\right) \leq d-1
$$

Example 1.2. For $f(x)=x_{1} x_{2}$,

$$
\Delta_{y} f(x)=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)-x_{1} x_{2}
$$

The proof of Viola's theorem proceeds by case analysis, looking at whether f is biased or unbiased. If bias $f \geq \delta$, then for all x,

$$
f(x) \approx f(x)+f(x+y)=\Delta_{y} f(x) .
$$

for a random y. If bias $f \leq \delta$, then

$$
\operatorname{bias} f=\left|\mathbb{E}_{Y \sim U_{n}}\left[(-1)^{f(y)}\right]\right| .
$$

Then you need to argue that

$$
\mathbb{E}_{X^{(1)}, \ldots, X^{(d)}}\left[(-1)^{f\left(X^{(1)}+X^{(2)}+\cdots+X^{(d)}\right)}\right]
$$

is small.

1.2 Restriction-based pseudorandom generation

Here is a thought experiment due to Ajtai and Wigderson. If we use a random restriction, we may get a simplified function which we can more easily fool. If we can fool a randomly restricted function, then the uniformly random and the partially uniformly random inputs should be indistinguishable to f :

Now we recursively replace the actually random bits (gold coins) with pseudorandom bits (silver coins). Then the pseudorandom bits should be indistinguishable from the actually
random bits.

To fool $f \in \mathcal{C}$, it sufficies to fool f under (pseudo)-random restrictions:

- Select $J \subseteq[n]$ pseudo-randomly, with $|J| \approx p n$.
- Select $x \sim \mathcal{D}$, a pseudorandom distribution on $\{ \pm 1\}^{n}$.
- Select $z \sim U_{\bar{J}}$, the uniform distribution on \bar{J}, so that

$$
\mathbb{E}_{Y \sim U_{n}}[f(Y)] \approx \mathbb{E}_{J}\left[\mathbb{E}_{X \sim \mathcal{D}, Z \sim U_{\bar{J}}}\left[f_{J, Z}(X)\right]\right.
$$

To get a pseudorandom generator, apply recursion $\frac{1}{p} \log n$ times.
Theorem 1.2 (Ajtai-Wigderson '85). It is enough for \mathcal{D} to fool $f_{J, z}(x)$ for mosy choices of J, z.
Theorem 1.3 (GMRTV '12). It is enough for \mathcal{D} to fool their average

$$
\operatorname{Bias} f(x)=\mathbb{E}_{J, Z \sim U_{\bar{J}}}\left[f_{J, Z}(x)\right] .
$$

Here is the Fourier analytical approach: The Fourier expansion of $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} x_{I},
$$

where

$$
\widehat{f}(S)=\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X) \prod_{i \in S} X_{i}\right], \quad L_{1}(f)=\sum_{S \subseteq[n]}|\widehat{f}(S)| .
$$

In 2013, Reingold, Steinke, and Vadhan considered $L_{1 . k}(f):=\sum_{S:|S|=k}|\widehat{f}(S)|$.

Proposition 1.2. Under p-random restrictions, Fourier coefficients of sets of size k shrink by a p^{k} factor.

$$
\mathbb{E}\left[L_{1, k}(\operatorname{Bias} f)\right]=\sum_{k=0}^{n} p^{k} L_{1, k}(f) .
$$

If there exists a t such that for all $k, L_{1, k}(f) \leq t^{k}$, then picking $p=\frac{1}{2 t}$ gives $\mathbb{E}\left[L_{1}(\operatorname{Bias} f)\right]=$ $O(1)$.

This tells us that under p-random restrictions, small-biased distributions fool the restricted function. So if this holds for pseudorandom J as well, this gives a PRG with $O\left(t \cdot \log ^{2} n\right)$ random bits.

1.3 Fractional pseudorandom generators

Assume that there exists a parameter t such that for any $f \in \mathcal{C}$ and for any k,

$$
L_{1, k}(f)=\sum_{\substack{S \subseteq[n],|S|=k}}|\widehat{f}(S)| \leq t^{k}
$$

and that \mathcal{C} is closed under restriction. Then the following approach will give a pseudorandom generator with seed-length $O\left(t^{2} \log (n / \varepsilon)\right)$.

The idea of CHHL is to "think inside the box." If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has Fourier expansion

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} x_{i},
$$

then we can view this as an extension of the function to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Proposition 1.3. If we restrict the domain of f to $[-1,1]^{n}$, then the range is contained in $[-1,1]$.
Example 1.3. Let $f\left(x_{1}, x_{2}\right)=\frac{1}{2}-\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{1} x_{2}$.
[insert picture 3]
Proof. If $\mu \in[-1,1]^{n}$, then we claim that

$$
f(\mu)=\mathbb{E}_{X_{1}, \ldots, X_{n}}[f(X)],
$$

where the X_{i} are independent with distribution

$$
\mathbb{P}\left(X_{i}=1\right)=\frac{1+\mu_{i}}{2}, \quad \mathbb{P}\left(X_{i}=-1\right)=\frac{1-\mu_{i}}{2} .
$$

This follows from the linearity of expectation:

$$
\mathbb{E}_{X_{1}, \ldots, X_{n}}[f(X)]=\mathbb{E}\left[\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} X_{i}\right]
$$

$$
\begin{aligned}
& =\sum_{S} \widehat{f}(S) \mathbb{E}\left[\prod_{i \in S} X_{i}\right] \\
& =\sum_{S} \widehat{f}(S) \prod_{i \in S} \mathbb{E}\left[X_{i}\right] \\
& =\sum_{S} \widehat{f}(S) \prod_{i \in S} \mu_{i} \\
& =f(\mu) .
\end{aligned}
$$

Definition 1.2. An ε-fractional pseudorandom generator is a distribution \mathcal{D} over $[-1,1]^{n}$ (sampleable with s random bits) such that for all $f \in \mathcal{C}$

$$
\left|\mathbb{E}_{X \sim \mathcal{D}}[f(X)]-\mathbb{E}_{Y \sim U_{n}}[f(Y)]\right| \leq \varepsilon
$$

Here we are comparing points inside the box with points on the corners.
Remark 1.1. Using the proof of the previous lemma,

$$
\mathbb{E}_{Y \sim U_{n}}[f(Y)]=f(0) .
$$

So we can rewrite this condition as

$$
\left|\mathbb{E}_{X \sim \mathcal{D}}[f(X)]-f(0)\right| \leq \varepsilon .
$$

The issue is that we can always just sample from 0 to get a fractional pseudorandom generator. But we really want to sample from the corners, so CHHL came up with the following condition.

Definition 1.3. An ε-fractional pseudorandom generator \mathcal{D} is p^{2}-noticable if for all i

$$
\mathbb{E}_{X \sim \mathcal{D}}\left[X_{i}^{2}\right] \geq p^{2}
$$

We will treat the case where X is drawn from a fractional pseudorandom generator over $[-p, p]^{n}$.

Proposition 1.4. If we take $\frac{1}{2 t} \mathcal{D}$, we get a fractional PRG that fools f with error $O(\varepsilon)$.
Proof.

$$
\begin{aligned}
\left|\mathbb{E}_{X \sim \mathcal{D}}\left[f\left(\frac{1}{2 t} X\right)\right]-f(0)\right| & =\left|\mathbb{E}_{X \sim \mathcal{D}}\left[\sum_{S} \widehat{f}(S) \prod_{i \in S}\left(\frac{1}{2 t}\right) X^{i}\right]-\widehat{f}(\varnothing)\right| \\
& =\left|\mathbb{E}_{X \sim \mathcal{D}}\left[\sum_{S \neq \varnothing} \widehat{f}(S) \prod_{i \in S}\left(\frac{1}{2 t}\right) X^{i}\right]\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{S \neq \varnothing}|\widehat{f}(S)|\left(\frac{1}{2 t}\right)^{|S|}\left|\mathbb{E}_{X \sim \mathcal{D}}\left[\prod_{i \in S} X_{i}\right]\right| \\
& \leq \varepsilon \sum_{\varnothing \neq S \subseteq[n]}|\widehat{f}(S)|\left(\frac{1}{2 t}\right)^{|S|} \\
& \leq \varepsilon \sum_{k=1}^{n} L_{1, k}(f)\left(\frac{1}{2 t}\right)^{k} \\
& =\varepsilon \sum_{k=1}^{n} \frac{t^{k}}{(2 t)^{k}} \\
& \leq \varepsilon .
\end{aligned}
$$

What CHHL showed is that if \mathcal{C} is closed under restriction, then we can use random restrictions to get a PRG from a fractional PRG. It is conjectured that low-degree polynomials over \mathbb{F}_{2} have these desired properties.

